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Accelerating Matrix-Vector Operations
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Significant energy spent moving DNN weights from memory




Compute-In-Memory (CiM)
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L. No energy spent moving DNN weights
L. Memory arrays can run many operationsin parallel




The CiM Stack
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The CiM Stack
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The CiM Stack

Opportunities in exploring all levels of the stack




The CiM Stack

[Jia, JSSC 2020] [Sinangil, JSSC 2021] [Wang, VLS| 2022]

You’d like to find the most energy-efficient architecture

But published results have different...
Technology nodes
Devices
Workloads
Supported resolutions

Levels interact with one another!
Can’t compare architectures based on published results alone.




Workloa
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CiMLoop Goals

1. Represent the co-design space

— Challenge: There are diverse choices at each level
— Solution: Flexible user-defined specifications

2. Accurately model energy
— Challenge: Workload values and architecture representations affect circuit energy

— Solution: Energy models that capture these cross-stack interactions

3. Quickly explore the large co-design space

— Challenge: Accurate energy models may simulate many (>10'%) values
— Solution: Statistical models that are 1000x faster than prior accurate models



The Co-Design Space: Components
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[Kim, JSSC 2021] [Sinangil, JSSC 2021] [Shiflett, ISCA 2021] [Wan, Nature 2022] [Jia, JSSC 2020] [Wang, VLSI 2022]

Library of circuit and device models
+

Plug-in interface for users to create more models




The Co-Desigh Space: Connections

‘ Valid Path ‘

Backing Storage

‘ Invalid Path

E ADCs

Must define how data may move through the system
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The Co-Desigh Space: Connections

Benefit: 3x Memory cells
compute with one input \
Cost: 1x Storage read

Cost: 1x DAC convert

Spatial Reuse)

J
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Benefit: 3x Memory cells
compute with one output

Backing Storage

Cost: 1x ADC convert
Cost: 1x Storage write

Spatial reuse uses one value across parallel components
More bang for your buek!

computations ADC/DAC convert & memory access
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The Co-Desigh Space: Connections

Benefit: Nx timesteps

Backing Storage

=PI DACS |—p -

fD compute with one weight

Cost: 1x Initial storage write
| | |

E ADCs

Temporal reuse uses one value across timesteps
More bang for your buek!

computations initial weight write
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128x128 Digital Bitcells

Define circuits and devices
(Components)

The Co-Desigh Space: Connections

(Connections)

Define permitted reuse patterns
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[Kim, JSSC 2021]

Post Accumulator

CiMLoop can represent diverse CiM designs
We provide open-source models of six different works

R/W Interface |
ING3{3:0][ ;-
INB2(3:0] | £ i

TNSA Z g
256 GMOS neurons and o2
ocla

3 i
=||5|/64 X 64 8T Array| 65,506 RRAM cells

£
D)
£ M
£/ {i‘l\\\-:

Compensation Caps| :1%\
4-bit Flash ADCs
s g = =
16 4-bit 5 G -3
Outputs'é 5 5

[Sinangil, JSSC 2021] [Shiflett, ISCA 2021] [Wan, Nature 2022] [Jia, JSSC 2020]

[Wang, VLS| 2022]
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Building a Modeling Framework

Prior modeling works average 28% (up to 70%)
error in energy estimations

; .



Accurately Modeling Energy: Data-Value-Dependence
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Data-value-dependence significantly impacts device and circuit energy
Prior works assume fixed energy - significanterror




Accurately Modeling Energy: Data-Value-Dependence
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Capture data-value-dependence:

What values are there? How do we represent them? Where do we map their bits?
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Building a Modeling Framework

Calculate 10°-1012
data values for a DNN

Prior data-value-dependent models are >1000x slower
non-data-value-dependent models
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Quickly Modeling Energy: Distributions

ResNet18 Operand Value Distributions (Typical Layer)
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DNN operand values follow predictable distributions
Use distributions to quickly and accurately model energy
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Quickly Modeling Energy: Data-Distribution-Dependence
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Answer what, how, where for distributions - One calculation for any number of reads
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Building a Modeling Framework
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Fast Statistical Energy Modeling

Data-Value-Dependent

NeuroSim
[Peng, TCAD 2021]

Data-Value-Independent

Timeloop
[Parashar, ISPASS 2019]
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Fast Statistical Energy Modeling

Data-Value-Dependent Data-Value-Independent Data-Distribution-Dependent
NeuroSim Timeloop CiMLoop
[Peng, TCAD 2021] [Parashar, ISPASS 2019] [This Work]
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CiMLoop Validation

NMC Data Path i — | _
Design A Design B Design C Design D
[Jia, JSSC 2020] [Sinangil, JSSC 2021] [Wan, Nature 2022] [Wang, VLSI 2022]

Validated against four fabricated CiM publications
with unique devices, circuits, architecture, workloads, and mapping
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CiMLoop Validation
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[Jia, JSSC 2020] [Sinangil, JSSC 2021] [Wan, Nature 2022]

Design D

[Wang, VLS| 2022]

CiMLoop Average Error

Supply Voltage Bit Precision Per-Component
Sweeps Sweeps Breakdowns
Energy 7% 6% 4%
Throughput 2% 5% N/A
Area N/A N/A 8%
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[Jia, JSSC 2020] [Sinangil, JSSC 2021] [Wang, VLS| 2022]

You’d like to find the most energy-efficient architecture

But published results have different...
Technology nodes
Devices
Workloads
Supported resolutions
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Using CiMLoop: Compare Designs
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Apples-To-Oranges
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MISLEADING takeaway:
B architecture has best energy efficiency

For all architectures, we:
* (Devices) Use the same devices

(Circuits) Scale to 7nm technology node

(Circuits/Arch.) Use the same 8-bit ADC

(Workload) Run the same workload

(Arch./Mapping) Set up the design to
support 8-bit computations
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Using CiMLoop: Compare Designs

Apples-To-Oranges
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MISLEADING takeaway:
B architecture has best energy efficiency

ACCURATE takeaway:
Lowest-energy choice depends on workload
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Summary and Open-Source Models

* CiMLoop introduces:
— Flexible models to explore devices, circuits, architecture, workload, and mapping
— Accurate data-distribution-dependent energy modeling (10x lower error)
— Fast statistical energy models (1000x faster)

CiMLoop tutorials
and examples

* CiMLoop is open-source and out now! Includes:
— Models of published works: 5 CiM designs
— Full architectures
— Devices (ReRAM and SRAM) and circuits (component library)
— DNNs (CNNs and Transformers)
— Bonus: 1 photonic computing design

I I I - I- This work was funded in part by Ericsson, TSMC, the MIT

Al Hardware Program, and MIT Quest. https://github.com/mit-emze/cimloop
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