CiMLoop

A Flexible, Accurate, and Fast Compute-In-Memory Modeling Tool

Tanner Andrulis, Joel S. Emer, Vivienne Sze

International Symposium on Performance Analysis of Systems and Software (ISPASS) 2024

Accelerating Matrix-Vector Operations

Compute-In-Memory (CiM)

No energy spent moving DNN weights Memory arrays can run many operations in parallel

Opportunities in exploring all levels of the stack

You'd like to find the most energy-efficient architecture

But published results have different... Technology nodes Devices Workloads Supported resolutions

Levels interact with one another! Can't compare architectures based on published results alone.

7

Building a Modeling Framework

CiMLoop Goals

- 1. Represent the co-design space
 - **Challenge:** There are diverse choices at each level
 - **Solution:** Flexible user-defined specifications
- 2. <u>Accurately model energy</u>
 - **Challenge:** Workload values and architecture representations affect circuit energy
 - Solution: Energy models that capture these cross-stack interactions
- 3. <u>Quickly explore the large co-design space</u>
 - Challenge: Accurate energy models may simulate many (>10¹²) values
 - Solution: Statistical models that are 1000x faster than prior accurate models

The Co-Design Space: Components

Must define how data may move through the system

Define circuits and devices (Components)

Define permitted reuse patterns (Connections)

CiMLoop can represent diverse CiM designs We provide open-source models of six different works

[Shiflett, ISCA 2021]

[Wan, Nature 2022]

A1 Weight W1.3 MAC1.3 Col.	
8-b Analog IA S Weight W2.1 MAC21 8-b A	DC]
Analog IA Analog IA	16
	3
Analog IA	

[Wang, VLSI 2022]

Building a Modeling Framework

Accurately Modeling Energy: Data-Value-Dependence

Accurately Modeling Energy: Data-Value-Dependence

Building a Modeling Framework

Quickly Modeling Energy: Distributions

Quickly Modeling Energy: Data-Distribution-Dependence

Answer what, how, where for distributions \rightarrow One calculation for any number of reads

Building a Modeling Framework

Building a Modeling Framework

Fast Statistical Energy Modeling

Fast Statistical Energy Modeling

CiMLoop Validation

CiMLoop Validation

Using CiMLoop: Compare Designs

You'd like to find the most energy-efficient architecture

But published results have different... Technology nodes Devices Workloads Supported resolutions

Using CiMLoop: Compare Designs

MISLEADING takeaway: B architecture has best energy efficiency For all architectures, we:

- (Devices) Use the same devices
- (Circuits) Scale to 7nm technology node
- (Circuits/Arch.) Use the same 8-bit ADC
- (Workload) Run the same workload
- (Arch./Mapping) Set up the design to support 8-bit computations

Using CiMLoop: Compare Designs

Summary and Open-Source Models

• CiMLoop introduces:

- Flexible models to explore devices, circuits, architecture, workload, and mapping
- Accurate data-distribution-dependent energy modeling (10x lower error)
- Fast statistical energy models (1000x faster)

- CiMLoop is open-source and out now! Includes:
 - Models of published works: 5 CiM designs
 - Full architectures
 - Devices (ReRAM and SRAM) and circuits (component library)
 - DNNs (CNNs and Transformers)
 - Bonus: 1 photonic computing design

This work was funded in part by Ericsson, TSMC, the MIT AI Hardware Program, and MIT Quest. CiMLoop tutorials and examples

https://github.com/mit-emze/cimloop **30**