RAELLA

Reforming the Arithmetic for Efficient, Low-Resolution, and Low-Loss Analog PIM: No Retraining Required!

Tanner Andrulis, Joel S. Emer, Vivienne Sze

International Symposium on Computer Architecture (ISCA) 2023

Processing In Memory (PIM) Accelerators

Processing In Memory (PIM) Accelerators

Weight matrix stored in crossbar as analog conductance values

Input vector applied to rows as analog temporal values

Analog matrix-vector multiply Charge ~ Conductance × Time

Results appear on columns As analog charge values

Processing In Memory (PIM) Accelerators

The Titanium Law of ADC Energy

Idea: Break computation into smaller pieces Benefit: Smaller result from each piece, J Energy/Convert Tradeoff: More pieces to process, ↑ Converts/MAC

DNN Accuracy

Computations with zero-average weights produce near-zero results

Key Takeaway: Partition computation Digital calculates high-resolution center operations Analog calculates parallel offset operations

Adaptive Weight Slicing: Slice Large-Result Computations

Dynamic Input Slicing: Try Again with Smaller Slices

Reshaping the Distributions of Analog Values

Reshaping the Distributions of Analog Values

1024x reduction in required ADC range

→ Lower Energy ADC (\uparrow Efficiency) and/or → More computations per ADC convert (\uparrow Efficiency, Throughput)

Evaluation

- Full System Simulation comparing accelerators ISAAC and RAELLA
- Both low-accuracy-loss, run DNNs without modification/retraining

Green = Compute

RAELLA gets more compute per unit area, more compute per ADC convert

Evaluation: ISAAC and RAELLA

Evaluation: ISAAC and RAELLA

Key Takeaways

- High ADC energy is a challenge in PIM architectures:
 - Titanium Law can be used to analyze ADC energy tradeoffs
- Reduce ADC energy; make analog computations produce small results:
 - Center+Offset: Shift the mean of each computed distribution to the center of the ADC range
 - Adaptive Weight Slicing: If a computation produces large results, slice it into smaller pieces
 - **Dynamic Input Slicing:** Speculate that results are in-range, recover out-of-range results
- Small-result analog computation enables:
 - Lower-energy ADC and/or more analog compute with the same ADC range
 - Up to 5x higher efficiency and 3x higher throughput
 - Without modifying or retraining DNNs!

Key Takeaways

- High ADC energy is a challenge in PIM architectures:
 - Titanium Law can be used to analyze ADC energy tradeoffs
- Reduce ADC energy; make analog computations produce small results:
 - Center+Offset: Shift the mean of each computed distribution to the center of the ADC range
 - Adaptive Weight Slicing: If a computation produces large results, slice it into smaller pieces
 - **Dynamic Input Slicing:** Speculate that results are in-range, recover out-of-range results
- Small-result analog computation enables:
 - Lower-energy ADC and/or more analog compute with the same ADC range
 - Up to 5x higher efficiency and 3x higher throughput
 - Without modifying or retraining DNNs!