Deep Neural Networks + Analog Processing In Memory

1

Autonomous Navigation

Efficient, High Throughput DNN Inference

Mobile Applications

Internet-Of-Things

Efficient Datacenters

[Bernstein et al., Scientific Reports 2021]

Processing In Memory Accelerator

Processing In Memory Accelerator

Processing In Memory Accelerator

DNN Accuracy

[Andrulis, Emer, Sze, ISCA 2023]

Key Takeaways

Analog Processing-In-Memory can efficiently run Deep Neural Networks

But to use it effectively, we must think about how we compute

What computations does the neural network do?

How do we formulate computations for analog hardware?

Good answers can lead to lower-energy hardware.

